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ABSTRACT

Superplastic Forming (SPF) is a high temperature forming operation for producing
complex thin components in a single manufacturing process. It relies on the fact that
certain materials can undergo large ductility under certain conditions. These conditions are
forming within a specific range of strain rates, and forming in narrow ranges of
temperature. The SPF process has many unique advantages over conventional forming
operations including significant cost and weight savings potentials. However, the
conventional SPF can result in excessive thinning at certain locations and produce a non-
uniform thickness profile of the final formed part. To address these issues, a two-stage SPF
process has been developed to improve the uniformity of thickness distribution. The two-
stage SPF process is carried out by stretching the superplastic sheet at certain locations,
while preserving material thickness in the regions experienced thinning in the conventional
one-stage SPF, before the forward forming stage.

In this work, two techniques are applied to improve the final thickness distribution
of a complex and practical shape, namely, the license plate pocket potion of the
Oldsmobile Aurora decklid outer panel. These two techniques are the reverse free bulging
and sheet preforming. The commercial finite element code, ABAQUS™, has been used to
model the two-stage SPF process of an aluminum alloy AA5083 sheet at 450 °C. Finally,
an engineered preform cavity has been designed to improve the thickness profile of the
formed part.

It is found that the reverse free bulging technique did not result in the desired
improvement in the thickness distribution of the final part. On the other hand, the two-
stage SPF with sheet preforming has improved the thickness profile obtained from the one-
stage SPF.
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USING FINITE ELEMENT SIMULATION TO PREDICT THE
EFFECT OF THE PREFORM CAVITY IN TWO-STAGE
SUPERPLASTIC FORMING
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Reem Ahmad MousaJafar

Supervisor
Dr. Naser S. Al-Huniti, Prof.

ABSTRACT

Superplastic Forming (SPF) is a high temperature forming operation for producing
complex thin components in a single manufacturing process. It relies on the fact that
certain materials can undergo large ductility under certain conditions. These conditions are
forming within a specific range of strain rates, and forming in narrow ranges of
temperature. The SPF process has many unique advantages over conventional forming
operations including significant cost and weight savings potentials. However, the
conventional SPF can result in excessive thinning at certain locations and produce a non-
uniform thickness profile of the final formed part. To address these issues, a two-stage SPF
process has been developed to improve the uniformity of thickness distribution. The two-
stage SPF process is carried out by stretching the superplastic sheet at certain locations,
while preserving material thickness in the regions experienced thinning in the conventional
one-stage SPF, before the forward forming stage.

In this work, two techniques are applied to improve the final thickness distribution
of a complex and practical shape, namely, the license plate pocket potion of the
Oldsmobile Aurora decklid outer panel. These two techniques are the reverse free bulging
and sheet preforming. The commercial finite element code, ABAQUS™, has been used to
model the two-stage SPF process of an aluminum alloy AA5083 sheet at 450 °C. Finally,
an engineered preform cavity has been designed to improve the thickness profile of the
formed part.

It is found that the reverse free bulging technique did not result in the desired
improvement in the thickness distribution of the final part. On the other hand, the two-
stage SPF with sheet preforming has improved the thickness profile obtained from the one-
stage SPF.
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CHAPTER 1

INTRODUCTION

Superplastic forming (SPF) is a high temperature forming operation for producing
complex thin sheet components in a single manufacturing process. It relies on the fact that

some materials can undergo large ductility under certain conditions.

The SPF has many unique advantages over conventional forming processes
including greater design flexibility, forming light weight components with complex
geometries in one manufacturing step, low dies cost and the elimination of spring back.
Although SPF offers many advantages it still faces many problems that hamper its
widespread use. These limitations include the non-uniformity of the produced part
thickness, long forming times, the possibility of severe thinning and necking at certain

locations and large amounts of cavities developed in some superplastic alloys.

Two-stage SPF is a process that utilizes two stages of gas forming within one die.
During the first stage, the superplastic material sheet is forced to take the shape of the
preform cavity. This preform cavity is designed in a way to pre-stretch the sheet and
increase the thickness at the critical locations which experienced thinning in the
conventional SPF. Currently, the two-stage SPF process is mainly based on finite element

analysis (FEA) and experimental iterations.

In order for the two-stage SPF process to become an efficient forming operation, its
output:should-bepredictable.and the forming time must be reduced without compromising
the integrity of the produced parts. In addition, the thickness distribution of the formed
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parts must be improved, even though a certain amount of deviation cannot be avoided due
to the stretching of the sheet. All of this requires developing accurate material models and

the execution of thorough experimental and numerical investigations.

1.1 Background

1.1.1 Superplasticity

Superplasticity is the ability of certain type of materials to exhibit large tensile
deformation prior to fracture. The conditions for superplasticity to occur are forming
within a specific range of strain rates, and forming in narrow ranges of temperatures. Each
material has a unique optimum value of strain rate, and a narrow temperature range which
lies above half the material’s absolute melting point (Lin, 2003). Figure 1.1 shows a
comparison between conventional and superplastic tensile testing of an Aluminum

specimen (Yarlagadda, et al., 2002).

D—4—4+Ad D+ —+4<Q

Figure 1.1 Comparison of conventional and superplastic tensile testing (Yarlagadda, et al., 2002).

1.1.2 History of Superplasticity

The history of superplasticity can be divided into three main time periods: before

1962, from 1962 to 1982, and from 1982 to the present.
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1.1.2.1 Before 1962

According to Nieh, et al. (1997) this stage began with a paper published by
Bengoughin 1912 which is believed to contain the first recorded description of
superplasticity in a metallic material. In 1934, Pearson observed the unusual large
elongations that could be achieved in certain fine-structured materials. Later on, in 1945,
Bochvar and Sviderskajo put the expression Superplastichnost (ultrahigh plasticity) in their
paper on superplastic alloys. The term Superplasticity first appeared in a technical paper by
Lozinsky and Simeonovain 1959. Figure 1.2 summarizes the key observations and

discoveries in superplasticity through this stage (Nieh, et al., 1997).

Pearson published
N dramatic picture of
Sauveur discovered
internal stress m:::oa'::g
superplasticity alloy
pz'::;::, Bochvar and colleagues carried out
Bengough first picture research on superplasticity in
observed of the USSR and coin the term
superplasticity " “Sverhplastichnost”
- i sy, tic s
in a brass in m (superplasticity)
1912
| A4 r | y | l | J
1910 1920 1930 1940 1950 1960

Figure 1.2 Key discoveries in superplasticity in the early and middle part of the twentieth century (Nieh, et
al., 1997).

1.1.2.2 From 1962 to 1982

The major increase in interest in superplasticity came in 1964, when Backofen, et
al. published a paper suggesting applying polymer and glass forming techniques in
superplastic metals forming. By 1969, the first book entitledSuperplasticity of Metals and

Alloys was published by, Presnyakov. After that, numerous papers on superplasticity were
www.manaraa.co



issued. Following these publications, SPF became a process for manufacturing lightweight

complex components in many applications.

1.1.2.3 From 1982 to the Present

During this time period, many conferences were held on SPF, and numerous papers
were published to eliminate the limitations of SPF that hamper its widespread use. In the
present stage, the focus is pointed towards making SPF the manufacturing choice for

lightweight complex components in high rate mass production.

1.1.3 Superplastic Materials

Superplastic materials are polycrystalline solids which, under certain conditions,
have the capability to exhibit very large elongations, i.e. >500%. While the maximum
elongation prior to failure that can be achieved in conventional alloys does not exceed
120%, regardless of the pulling speed or temperature (Pilling and Ridley, 1989). However,

large elongations usually occur in a low strain rate range from 107 to 107 s

' is defined as high strain rate

Superplasticity which occur at strain rates >102 s
superplasticity in Japanese Industrial Standards (JIS) H 7007 by Japanese Standards

Association. Aluminum- and titanium-based materials are high strain rate superplastic

materials (Yarlagadda, et al., 2002).

Superplasticity has been noticed in various types of materials, such as ceramics
(including composites and monoliths), metals (including aluminum, iron, magnesium,

titanium and nickel-based alloys), intermetallics (including iron, nickel, and titanium base)
www.maharaa.co



and laminates (Xing, et al., 2004). The main metallurgical requirements for these materials
to exhibit superplasticity are fine equi-axed grain structure, grain size in the range of 2 to
10 micrometers (Pilling and Ridley, 1989), and a resistance to both grain growth and

cavities formation (Siegert and Werle, 1994).

1.1.3.1 Aluminum Alloys

Aluminum alloys have been used to produce superplastically formed parts for the
automotive, aerospace, marine, and architectural industries (Osada, 1997, Nakamura, et al.
1997 and Barnes, 1999). These alloys can be used where low weight and high stiffness are
required (Xing, et al., 2004). The main characteristics of Aluminum alloys are: low weight,
good corrosion resistance, and relatively moderate strength (Verma, et al., 1996).
Superplastically formed Aluminum alloys have the ability to be stretched to several times
their original size without failure when heated to between 470 — 520 °C (Mikhailovskaya,

etal., 2012).

1.1.3.2 Magnesium Alloys

Magnesium has been receiving a great attention over the last decade since it is the
lightest constructional metal on earth (Nazzal, et al., 2011, a). Magnesium alloys are
attractive for applications where light weight and rigidity are the key elements for
component design. The lower density of Magnesium over currently used aerospace
Aluminum alloys have been the dominant driving force for using Magnesium alloys.

However, these alloys have relatively low strength which restricts their usage to
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applications where high strength is not necessarily needed (Park, et al., 1996 and Carrino,

etal., 2013).

1.1.3.3 Titanium Alloys

Titanium alloys have been used in aerospace and automobile industries. The main
characteristics of these alloys are: low weight-size ratio, high relative strength, resistance
to corrosion, high temperature creep resistance, and they do not need post-forming heat
treatment (Sieniawski and Motyka, 2007 and Yarlagadda, et al., 2002). Titanium alloy Ti-
6Al-4V has both excellent biocompatibility and superior mechanical properties. It can be
deformed greatly and easily at the superplastic temperature range of 800 - 900 °C (Okuno,

et al., 1989).

1.1.4 Material Behavior

Materials undergoing the superplastic forming operation have common
characteristics including a fine and stable grain size, and a low flow stress. The flow stress
in these materials is highly sensitive to the strain rate. A simple form of the constitutive
equation that describes this strain rate dependence for superplastic materials is given by
(Avery and Backofen, 1965):

o = kém (1.1)

Where o is the effective flow stress,¢ is the effective strain rate, k is the strength

coefficient, and m is the strain rate sensitivity exponent, which should be greater than 0.3
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for superplastic behavior to exist (Pilling and Ridley, 1989). The strain rate sensitivity
exponent or the m-value, which ranges from 0.3 to 0.8 for superplastic materials, is a
measure of a material’s ability to resist necking. Higher values of mgives higher tensile

elongation behavior for superplastic materials (Avery and Backofen, 1965).

The function of strain rate sensitivity in necking resistance can be explained by
considering tensile testing of a specimen under a constant strain rate condition. When a
neck begins to develop, the strain rate locally increases in the necked region and becomes
larger than the strain rate in the rest of the tensile specimen. According to equation (1.1)
and because of the high value of m, the desired flow stress would increase sharply in
response to the increase in the strain rate in the necked region in order to continue
deformation in that region. This would cause the material flow to occur outside the necked
region. Thus, strain rate hardening in that region prevents additional necking development
(Pilling and Ridley, 1989 and Siegert and Werle, 1994). As a result, a high m-value gives a
high resistance to neck development and leads to high tensile elongations prior to failure

characteristic of superplastic materials (Hedworth and Stowel, 1971).

A typical stress/strain rate relation for superplastic materials is shown on
logarithmic scales in figure 1.3. According to equation 1.1, the slope of the curve is equal
to the strain rate sensitivity exponent; this can also be seen from the second part of figure
1.3, which shows the variation of the strain rate sensitivity exponent with strain rate. The
sigmoidal shape in figure 1.3 can be divided into three regions based on the m-value. Note
that regions | and Ill, which represent the low strain rate and high strain rate regions,
respectively, have a strain rate sensitivity exponent value of less than 0.3. Thus,

superplasticity is not observed when forming under the conditions of these two regions. On
www.manaraa.co



the other hand, superplasticity occurs only in region I, which is the moderate strain rate
region, where the strain rate sensitivity exponent has values greater than 0.3, accompanied
by very large elongations. Unfortunately, this moderate strain rate region ranges between

10° — 102 1/sec, which is considered very low for high production rates.

log (or) || Region |
n |
| Region
| m
|
I
| I
| | fog (i)
I
I
I I
L&I
I I Finer grain size
mp - & Higher
: I Temperature
I I
0.3
| \
I I
I I —
log ()

Figure 1.3 Stress-strain rate curve for typical superplastic materials and the corresponding strain rate
sensitivity (Abu-Farha, 2007).

It should be noted here that the mechanical behavior of superplastic materials is
very sensitive to both temperature and grain size. Generally, increasing the forming
temperature or decreasing the grain size of the material increases both the strain rate

sensitivity exponent and the strain rate, however the flow stresses decrease (Pilling and

www.manaraa.co



1.1.5 Superplastic Forming Technique

The SPF process is carried out by heating a sheet of superplastic material placed on
a single-sided die. As mentioned previously, the sheet is heated to the required SPF
temperature which is specified for that material. Then, an inert gas is applied to one side of
the sheet to control the rate of deformation and force the sheet to take the shape of the die

cavity. The SPF process is illustrated schematically in figure 1.4.

Die Lid Compressed Air Inlet

Superplastic Sheet

Die Cavity

N e

Air Vent Lines

Figure 1.4 Schematic illustration of a single-stage SPF die (Luckey, et al., 2009).

There are two main types of SPF, cavity forming and bubble forming. Cavity
forming is most commonly used and ideal for producing large complex parts such as car
body panels, building cladding panels and large rail parts. This process is ideally suited to
forming 5083 aluminum alloys and Magnesium. In cavity forming a sheet of superplastic
material is heated and placed on a single-sided die. A pressurized gas is then applied to one
side of the sheet forcing it to take the shape of the die cavity. The other type of SPF, which

1s referred-to as bubble forming, is ideal for producing small components, where material
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